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There are two main approaches to numerically model
and simulate the time evolution of chemical reacting
systems. In the deterministic approach, the set of dif-

ferential equations describing the time evolution of the con-
centrations is solved using either analytical or numerical meth-
ods such as Euler or Runge-Kutta. It is assumed that the com-
plete time evolution of the reacting system is contained in
the solution of the set of equations, i.e., given a set of initial
conditions, only one trajectory is possible. In this paper, a
trajectory is a concentration-time curve. It corresponds to a
reacting species in a given experiment and describes the time
evolution of the reacting system in such an experiment.

In the stochastic approach, each individual reaction is con-
sidered a random event that can take place with a certain prob-
ability. Thus the time evolution of the concentrations depends
on a series of consecutive probabilistic events. Given a set of
initial conditions, there are many possible trajectories, each
with its own probability and with the sum of probabilities
adding up to one. These trajectories may be drawn by using
the probabilistic rate law.

The increasing interest of stochastic methods has been
pointed out by Schieber in this journal.[1] More recently,
Scappin and Canu[2] have reviewed the use of stochastic mod-
els for simulating the dynamics of complex chemical sys-
tems and have shown that these models allow for easy iden-
tification of the main reaction paths in reacting systems in-
volving hundreds of elementary steps.

In addition, several other authors[3,4] have pointed out that
deterministic models cannot accurately simulate the dynam-
ics of systems in which the time evolution depends on the
behavior of a very small number of molecules. Interesting
examples of such systems are individual cells in living or-

ganisms. McAdams and Arkin[4] have pointed out that

. . . Even in clonal cell populations and under the most uniform
experimental conditions, considerable variation is observed in the
rates of development, morphology, and the concentration of each
molecular species in each cell. These fluctuations . . . play a
fundamental role in the evolution of the living systems. . . .

These fluctuations may be predicted and explained by the
stochastic models but not by the deterministic ones.

Traditionally, the deterministic methods are by far the most
commonly used in modeling the time evolution of chemical
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reacting systems. The above remarks, however, may justify
the usefulness of introducing undergraduate students to the
use of stochastic methods to model chemical reactions.

In order to achieve better understanding of the fundamen-
tals of the stochastic simulation of chemical reactions, it is
interesting that students develop their own software tools to
carry out the simulation. We present here the basics of the
stochastic simulation of a well-known, simple process—the
AB equilibrium process—compared to the deterministic simu-
lation of the same process. In the stochastic simulation, we
follow the numerical method developed by Gillespie.[5]

Both simulations are carried out with MATLAB, a nu-
merical computation package of increasing use in chemi-
cal engineering education.

This example may prove useful for studying how the pre-
dictions of the stochastic model relate to the deterministic
predictions (and to real-life experiences). To extend the sto-
chastic simulation to other chemical processes, the students
can either develop the corresponding MATLAB software,
taking as a starting point the MATLAB software supplied in
this paper, or they can use commercial simulation software.
Two of these commercial programs (freely downloadable
from the Internet) are noted in this paper.

SIMULATION OF
THE AB  EQUILIBRIUM PROCESS

We have chosen as our example the process
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Figure 1. Deterministic (solid) and stochastic (dash, dot)
trajectories for the AB equilibrium process. The stochastic
trajectories were obtained in two consecutive runs. Initial
conditions were

NA(0) = 175; NB(0) = 25; k1 = 4 e-3 s-1; k2 = 1 e-3 s-1.

• It describes various real processes, such as the hy-
drolysis of lactone to γ -hydroxybutyric acid in strong
hydrochloric acid.[6]

• It has been previously treated by different authors.[6,7]

• It is simple enough to be modeled by the undergradu-
ate students. In order to make the modeling easier, we
will assume an isothermal process at constant volume.

Deterministic Simulation

The differential rate laws can be written as
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where N
A
(t) and N

B
(t) are the numbers of molecules after a

given reaction time t, and k
1
 and k

2
 are the direct and reverse

reaction rate constants.

Once the initial values of N
A
(t) and N

B
(t), (N

A
(0) and N

B
(0))

are specified, it is assumed that the solution of these differen-
tial equations describes the complete time evolution of the
reacting system. Figure 1 shows an example of the time evo-
lution of N

A
(t) and N

B
(t) predicted by this approach for N

A
(0)

= 175, N
B
(0) = 25, k

1
 = 0.004 s-1 and k

2
 = 0.001 s-1. These

trajectories were calculated using the MATLAB programs
listed in Appendices 1 and 2. In the deterministic approach,
given a set of initial conditions, all runs will give the same
trajectory.

The equilibrium values of N
A
 and N

B
 (N

A,eq
 and N

B,eq
) may

be easily calculated by the students. At equilibrium,

k N k NA eq B eq1 2 3, ,= ( )
Using the mass balance, we obtain

NA eq A BN N k k, /= ( ) + ( )[ ] + ( )[ ] ( )0 0 1 41 2

In our case, N
A,eq

 = 200/5 = 40 and N
B.eq

 = 160.

Stochastic Simulation

As mentioned above, the stochastic simulation of a chemi-
cal reacting system is rather different from the deterministic
one. Each reaction is a random event that can take place with
a given probability, which is a function of the reaction rate
constants and the number of molecules. There are many pos-
sible trajectories, which we can draw by using the probabi-
listic rate law. Thus the development of the stochastic simu-
lation requires a deep foundation of the probability theory. A
complete description of the stochastic treatment of the AB
equilibrium process can be found in a text by Steinfeld, Fran-
cisco, and Hase.[7]

In this paper we describe the development of a MATLAB
application for the generation of stochastic trajectories by
using the Gillespie algorithm.[5] Gillespie developed an el-
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egant and efficient algorithm that uses Monte Carlo techniques
to carry out the numerical stochastic simulation of any given
chemical reacting system and demonstrated that this simula-
tion gives an accurate description of the time evolution of the
system.

In the Gillespie algorithm, the probability of each reaction
is obtained by multiplying the reaction rate constant by the
number of combinations of molecules that can lead to the
reaction. For the AB process, the numbers of combinations
are

N NA
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respectively. In order to develop this algorithm, we first must
define

� dt
a time interval so small that either only one reaction or
no reaction at all can occur in the interval (t, t+dt) (i.e.,
dN

A
(t) = N

A
(t+dt) - N

A
(t) can only take the values -1, 0,

and 1).
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dt is the probability that any A

molecule will react to give a B molecule in (t, t+dt) and
similarly for k

2
.
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two positive functions such that W
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(t)]dt are the probabilities that, given that the num-

ber of molecules of A at time t is N
A
(t), at time t+dt the

number of molecules N
A
(t+dt) is equal to N
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(t)+1 and
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conditional probabilities (conditional on the value of
N

A
(t)) and play an essential role in defining the sto-

chastic model. In our example, taking into account the
above definitions of k

1
 and k

2
, these functions are
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After defining the initial conditions, N
i
(0) and the constant

k
i
, the Gillespie algorithm generates time steps of variable

length, depending on the probabilities of the reactions and on
the random nature of the process (a random number is used
to generate the time steps). Subsequently, a second random
number is generated to determine which of the two possible
reactions occurs, taking into account the reaction probabili-
ties. Next, the N

i
(t) values are updated according to the sto-

ichiometry and the process is repeated.

In order to determine the above reaction probabilities and
time steps, we need to define

�  a[N
A
(t)]

a non-negative function such that a[N
A
(t)]dt is the

probability that the number of molecules of A, which

takes the value N
A
(t) at time t, suffers a unitary in-

crement (positive or negative) in the differential in-
terval (t, t

+
dt). It verifies
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probability that the process, which has suffered an
increment of one on either sense, does it positively
or negatively (+1 for w

+
 and -1 for w

-
). These are

also conditional probabilities (conditional on the fact
that a reaction has taken place). Evidently
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�  u
random time step. It is the random variable “time to
the next reaction given that the number of molecules
of A at time t is N

A
(t).”

�  p
o
[N

A
(t), u]

complementary distribution function for u. Probabil-
ity that the number of molecules of X, which takes
the value N

A
(t) in time t, does not suffer any changes

in (t, t+u). It can be shown[5] that

po A AN t u a N t u( )[ ] − ( )[ ]{ } ( )=, exp 10

The distribution of u is an exponential with mean 1/a[N
A
(t)].

Using the Monte Carlo method, we can generate a suitable
value of the random number u using[5,7]

u a N t rA= ( )[ ]{ } ( ) ( )1 1 11/ log /

where r is a random number of the uniform distribution be-
tween 0 and 1. Note that the random time step decreases in
average as the probability that any chemical change takes
place in the time interval increases.

Thus the algorithm of generation of stochastic trajectories
can be written

1. Initialize t=0. Introduce the initial values N
A
(0) and

N
B
(0), k

1
 and k

2
. Define the total number of reactions

Z.

2. Generate a value of u: first a random number r is
generated from the uniform distribution in (0,1) and
then u = {1/a[N

A
(t)]} log(1/r).

3. Generate a second number r’ from the uniform
distribution in (0,1). This random number determines
which reaction will occur, based on conditional
probabilities. If w

-
[N

A
(t)] > r’, then take v = -1 and if

not, v = 1.

4. Update the process: t = t + u; N
A
(t+u) = N

A
(t) + v

5. If the total number of reactions i < Z, go back to step
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Figure 2. Stochastic trajectories (two runs) with NA(0) =
3500 and NB(0) = 500; k1 and k2 are the same

as in Figure 1.

Figure 3. Deterministc and stochastic (single and
averages) trajectories [NA(t)] for the AB process. The

initial conditions are the same as in Figure 1.

2. If i ≥ Z, then stop.

An example of the MATLAB progam (stochasticab.m),
which implements the above algorithm for the simulation of
the AB equilibrium process, is listed in Appendix 3. We em-
phasize the practical importance of using a random number
generator as good as possible to achieve an accurate simula-
tion, including those processes having a wide range of rate
constant magnitudes. In this work we have used the random
number generation algorithm provided by MATLAB, which
is applied extensively in statistical research.

DISCUSSION
Figure 1 shows the trajectories calculated by the above sto-

chastic algorithm in two consecutive runs, as well as the deter-

ministic trajectories, using the same initial values in all
cases. These trajectories can be used to carry out a com-
parative study on the two simulation approaches—stochas-
tic and deterministic.

We can see that there are clear differences. The stochastic
trajectories show important fluctuations. Moreover, two con-
secutive runs predict different trajectories, although the ini-
tial conditions are the same ones, i.e., we cannot assure the
value of N

A
(t) at each time point. On the other hand, the de-

terministic simulation will always predict the same trajec-
tory, given a set of initial conditions, and it does not present
fluctuations in the time evolution. When these results are
analyzed, some interesting questions arise. For instance,
do these fluctuations (also called stochastic noise) have
some physical meaning? Is it possible that we cannot pre-
dict with certainty the value of N

A
(t) at each time point in

a real-life experience?

The students should know that the fluctuations are a real
consequence of the probabilistic nature of each chemical re-
action. Some interesting real experiments showing stochas-
tic effects have been presented by de Levie.[3] We can’t see
these fluctuations in most real-life experiments, however.
Which are the factors that determine the importance of the
fluctuations? In order to develop an answer, the students can
repeat the simulations and vary the input conditions.

Figure 2 shows two new trajectories obtained through the
stochastic algorithm, but using a much larger number of ini-
tial molecules than in Figure 1, namely N

A
(0) = 3500 and

N
B
(0) = 500. It can be seen that the fluctuations are only im-

portant when the process starts with a small number of mol-
ecules. As the initial number of molecules increases, the fluc-
tuations decrease and the stochastic trajectory approaches the
deterministic one. This result was explained by Gillespie[5]

showing that the relative fluctuations in N
A
(t) around the mean

value of N
A
(t) (<N

A
(t)>, which can be obtained from repeated

runs) are approximately of the order of (<N
A
(t)>)1/2/<N

A
(t)>.

This is an important result, as it explains how the fluctua-
tions are not important in most real-life experiments. When
we work with 1020 molecules, the relative fluctuations (~10-

10), i.e., the uncertainties in the value of N
A
, are absolutely

negligible. In that case, a deterministic model allows an
adequate representation of most processes (with some ex-
ceptions—see below).

In many microscopic systems, however, the intrinsic fluc-
tuations are important. For instance, some biochemical reac-
tions taking place in individual cells of living organisms
depend on ten or less molecules. In that case, the fluctua-
tions can play a fundamental role in the behavior of the
system. Deterministic models cannot adequately describe
such behavior.

Figure 3 can be used to explain the relationship between
deterministic and stochastic trajectories. It can be seen how
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the average of stochastic trajectories approaches the deter-
ministic trajectory as the number of averaged trajectories
increases (i.e., the deterministic trajectories can be ex-
plained as the average behavior of the whole set of pos-
sible stochastic trajectories).

Finally, students can see that both the stochastic and deter-
ministic approaches predict the same final state for the AB
equilibrium process, but this is not evident in all cases, even
at a macroscopic scale. There are processes with more than
one possible stable final state. These processes will evolve
toward one of the possible final states, each evolution having
a probability that depends on the initial conditions. This is an
infrequent behavior in nature, which can be explained and
predicted using a stochastic approach.[5]

EXTENDING THE SIMULATION TO OTHER
REACTIONS: COMMERCIAL PROGRAMS

Once the students understand the fundamentals of the sto-
chastic simulation of chemical reactions, the application to
the simulation of other chemical processes can be carried out
using commercial simulation programs or even by develop-
ing new MATLAB software similar to the programs presented
here. The key point of this development is obtaining the func-
tions W

+
[N

A
(t)] and W

-
[N

A
(t)], which represent the sources

and wells of A molecules in each chemical process.

The commercial programs save user time since he/she only
has to provide a suitable mechanism and the set of initial
data. Moreover, most of these programs include a built-in
collection of developed (and interesting) examples. Of the
several commercial packages available, we will focus on
two high-quality programs that can be freely downloaded
from the Internet.

Chemical Kinetics Simulator (CKS 1.01 currently avail-
able in versions for OS 2 2.x and higher, Apple Macintosh
and Power Macintosh, and Microsoft Windows, 3.1/Windows,
95/Windows NT) was developed at IBM’s Almaden Research
Center in San Jose, California, and can be downloaded from
its homepage.[8] It is an easy-to-use program (with an excel-
lent tutorial) that allows the accurate stochastic simulation of
chemical reactions, including those in which changes in vol-
ume, pressure, or temperature are expected. For instance, it
may work with explosions. The simulations included in the
package may also be useful as learning tools. Some examples
of these simulations are the copolymerization of two mono-
mers, a catalytic process in a batch reactor, and the simula-
tion of gas phase reactions in a CVD reactor.

StochSim is a stochastic simulator with a marked focus on
biochemical processes. In this case the examples included
simulate, for instance the Michaelis-Menten enzyme kinet-
ics and the Lotka Volterra process. It was written by Carl
Firth at the University of Cambridge. The currently available
version 1.4[9] consists of a platform-independent core simula-

tion engine encapsulating the stochastic algorithm and a sepa-
rate graphical user interface. The stochastic algorithm used
in this program is rather different from the Gillespie algo-
rithm; here each molecule is represented as a separate soft-
ware object. This is advantageous for simulating processes
in which the physical and chemical properties of the reacting
molecules change in the course of the reaction.[10]

CONCLUSIONS
Stochastic models are playing an increasing role in the simu-

lation of chemical and biochemical processes, as they allow
adequate prediction of the so-called stochastic effects, includ-
ing the intrinsic fluctuations of the system. These fluctua-
tions can play a fundamental role in the evolution of the
living systems and, in general, in the behavior of many
microscopic systems.

In this paper the Gillespie algorithm is proposed as a suit-
able tool for introducing undergraduate students to the basics
of the stochastic simulation of chemical reactions. Applica-
tion of the Gillespie algorithm to a simple and well-known
reaction, the AB equilibrium process, is presented. Using this
algorithm, the students can develop their own MATLAB pro-
grams to carry out the stochastic simulations of the AB
process and then use the results to analyze the main dif-
ferences between the stochastic and the deterministic mod-
eling of a chemical reaction.

Two examples of MATLAB programs are presented. Stu-
dents can also easily adapt these two programs to other reac-
tion schemes. Finally, two commercial simulation programs
(freely downloadable from the Internet) are proposed as ad-
ditional tools for extending the stochastic simulation to other
chemical processes.
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APPENDIX 1
Program deterab.m for deterministic simulation

% This program performs the deterministic simulation of the
AB chemical % process

% k1 y k2 are the direct and reverse reaction rate constants

% na0 and nb0 are the initial numbers of molecules

% tfinal is the total reaction time

k1=4.e-3;

k2=1.e-03;

h=k1;

1=k2;

na0=175;

nb0=25;

tfinal=1000;

timestep=1;

time=0;timestep:tfinal;

[T,Y]=ode45(‘fisomer’,time,[na0],[],na0,nb0,k1,k2);

matrix=[T Y na0+nb0)-Y];

save figure 1.dat matrix/ascii;%save results

plot(T(1:500),Y(1:500),T(1:500),na0+nb0-Y(1:500));

% plot curves

APPENDIX 2
Auxiliary function fisomer for

deterministic simulation

function F = fisomer(time,Y,flag,na0,nb0,k1,k2)

h=k1;

1=k2;

F=(-h*Y)+(1*(na0+nb0-Y));

APPENDIX 3
Program stochasticab.m for

stochastic simulation

% This program performs the stochastic simulation of the

AB process
% k1 y k2 are the direct and reverse reaction rate constants
% na0 and nb0 are the initial numbers of molecules
% Z is the total number of reactions
% numtray is the number of trajectories to be generated

k1=5.e-3;
k2=1.e-03;
h=k1;
1=k2;
na0=175;
nb0=25;
Z=500;
numtray=2;

% in this example we generate and plot just two trajectories
unif=rand(numtray,N,2);

na=na0;
nb=nb0;
t=0;
x(1:numtray,1)=ones(numtray,1)*na0;
xb(1:numtray,1)=ones(numtray,1)*nb0;
for m=1:numtray;
  na=na0;
  nb=nb0;
  t=0
  for i=2:N;
    Wplus(i)=1*nb;
    Wminus(i)=h*na;
    a=Wplus(i)+Wminus(i);
    wplus(i)=1*nb/((h*na)+(1*nb));
    wminus(i)=(h*na)/((h*na)+(1*nb));
    u(i)=(1/a)*log(1/unif(m,i,1));
    if wminus(i)>unif(m,i,2)
      v=-1;
    else
      v=1;
    end;
    na=na+v;
    nb=nb-v;
    t=t+u(i);
    x(m,i)=na;
    xb(m,i)=nb;
    time(m,i)=t;
  end;
% close loop for each trajectory
  end;
% close loop for number of trajectories
matrix(:,(i-1)*3+1)=time(m,:);
plot(time(1,:),x(1,:),time(2,:),x(2,:),time(1,:),xb(1,:),time(2,:),xb(2,:))
% plot two trajectories
matrix=[time(1,:)’x(1,:)’xb(1,:)’time(2,:)’x(2,:)’xb(2,:)’];
save figure2.dat matrix/ascii;

% save results
❐


